Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.903
3.
Clinics (Sao Paulo) ; 79: 100350, 2024.
Article En | MEDLINE | ID: mdl-38636197

OBJECTIVE: The present study aimed to investigate FOXO3a deregulation in Uterine Smooth Muscle Tumors (USMT) and its potential association with cancer development and prognosis. METHODS: The authors analyzed gene and protein expression profiles of FOXO3a in 56 uterine Leiomyosarcomas (LMS), 119 leiomyomas (comprising conventional and unusual leiomyomas), and 20 Myometrium (MM) samples. The authors used techniques such as Immunohistochemistry (IHC), FISH/CISH, and qRT-PCR for the present analyses. Additionally, the authors conducted an in-silico analysis to understand the interaction network involving FOXO3a and its correlated genes. RESULTS: This investigation revealed distinct expression patterns of the FOXO3a gene and protein, including both normal and phosphorylated forms. Expression levels were notably elevated in LMS, and Unusual Leiomyomas (ULM) compared to conventional Leiomyomas (LM) and Myometrium (MM) samples. This upregulation was significantly associated with metastasis and Overall Survival (OS) in LMS patients. Intriguingly, FOXO3a deregulation did not seem to be influenced by EGF/HER-2 signaling, as there were minimal levels of EGF and VEGF expression detected, and HER-2 and EGFR were negative in the analyzed samples. In the examination of miRNAs, the authors observed upregulation of miR-96-5p and miR-155-5p, which are known negative regulators of FOXO3a, in LMS samples. Conversely, the tumor suppressor miR-let7c-5p was downregulated. CONCLUSIONS: In summary, the outcomes of the present study suggest that the imbalance in FOXO3a within Uterine Smooth Muscle Tumors might arise from both protein phosphorylation and miRNA activity. FOXO3a could emerge as a promising therapeutic target for individuals with Unusual Leiomyomas and Leiomyosarcomas (ULM and LMS), offering novel directions for treatment strategies.


Forkhead Box Protein O3 , Leiomyoma , Uterine Neoplasms , Humans , Female , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/metabolism , Middle Aged , Leiomyoma/genetics , Leiomyoma/pathology , Leiomyoma/metabolism , Adult , Immunohistochemistry , Gene Expression Regulation, Neoplastic/genetics , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Leiomyosarcoma/metabolism , Smooth Muscle Tumor/genetics , Smooth Muscle Tumor/pathology , Smooth Muscle Tumor/metabolism , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Aged , Myometrium/metabolism , Myometrium/pathology
5.
Br J Cancer ; 130(9): 1463-1476, 2024 May.
Article En | MEDLINE | ID: mdl-38438589

BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.


Blood Proteins , Cystadenocarcinoma, Serous , Galectin 3 , Uterine Neoplasms , Humans , Female , Uterine Neoplasms/pathology , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cell Proliferation , Cell Line, Tumor , Prognosis , Animals , Mice , Galectins/genetics , Galectins/metabolism , Cell Movement
6.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38290796

Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.


Leiomyoma , Uterine Neoplasms , Female , Humans , Middle Aged , Black or African American , Gene Expression Profiling , Leiomyoma/genetics , Leiomyoma/metabolism , Myometrium/metabolism , Tumor Microenvironment , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterus/metabolism , White
7.
Adv Med Sci ; 69(1): 21-28, 2024 Mar.
Article En | MEDLINE | ID: mdl-38278085

Uterine leiomyomas (ULs) are the most common benign smooth muscle cell steroid-dependent tumors that occur in women of reproductive age. Progesterone (P4) is a major hormone that promotes the ULs development and growth. P4 action in ULs is mediated mainly by its nuclear progesterone receptors (PGRs), although rapid non-genomic responses have also been observed. Data on the membrane progesterone receptors (mPRs) regulated signaling pathways in ULs in the available literature is still very limited. One of the essential characteristics of ULs is the excessive production of extracellular matrix (ECM). P4 has been shown to stimulate ECM production and collagen synthesis in ULs. Recent research demonstrated that, despite their benign nature, ULs may present with abnormal vasculature. P4 has been shown to regulate angiogenesis in ULs through the upregulation of vascular endothelial growth factor (VEGF) and by controlling the secretion of permeability factors. This review summarizes the key findings regarding the role of PGRs and mPRs in ULs, especially highlighting the potential ECM and angiogenesis modulation by P4. An increased understanding of this mechanistic role of nuclear and specifically mPRs in the biology of P4-modulated ECM and angiogenesis in the growth of ULs could turn out to be fundamental for developing effective targeted therapies for ULs.


Leiomyoma , Progesterone , Receptors, Progesterone , Signal Transduction , Uterine Neoplasms , Humans , Leiomyoma/metabolism , Leiomyoma/pathology , Progesterone/metabolism , Female , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/drug therapy , Receptors, Progesterone/metabolism , Extracellular Matrix/metabolism , Molecular Targeted Therapy
8.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article En | MEDLINE | ID: mdl-38279317

The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.


Leiomyoma , Mediator Complex , RNA, Long Noncoding , Uterine Neoplasms , Female , Humans , Ethnicity , Leiomyoma/genetics , Leiomyoma/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Mutation , Myometrium/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
9.
Clin. transl. oncol. (Print) ; 26(1): 245-259, jan. 2024.
Article En | IBECS | ID: ibc-229163

Purpose A substantial amount of evidence demonstrates suggests that long non-coding RNAs (lncRNAs) play a key role in the progression of various malignancies, cervical squamous cell carcinoma (CSCC) included. In our study, we deeply investigated the role and molecular mechanism of lncRNA NPHS2-6 in CSCC. Methods The expression level of gene and protein expression were measured by qRT-PCR and western blot. To test the cell proliferation and cell metastasis ability, we carried out the CCK-8 experiment, clone formation assay, transwell assay and wound healing, respectively. The interactivity among NPHS2-6, miR-1323 and SMC1B were co demonstrated using the bioinformatics tool, dual-luciferase reporter system, and RNA pulldown assay. The subcutaneous tumor model of nude mice was established to verify the results of previous studies at the in vivo. NPHS2-6 was upregulated in CSCC tissues and cells. Results NPHS2-6 deficiency significantly inhibited CSCC cell growth and EMT in vitro. In addition, NPHS2-6 deficiency also inhibited the growth of CSCC xenograft tumors in mice in vivo. Importantly, NPHS2-6 was a competing endogenous RNA (ceRNA) to increases SMC1B levels by binding to miR-1323, leading to activate the PI3K/Akt pathway, thereby exacerbating tumorigenesis of CSCC. Conclusions In conclusion, NPHS2-6/miR-1323/SMC1B/PI3K/Akt signaling accelerates the progression of CSCC, providing a new direction for the treatment strategy of CSCC (AU)


Animals , Female , Mice , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
10.
F S Sci ; 5(1): 80-91, 2024 Feb.
Article En | MEDLINE | ID: mdl-38043603

OBJECTIVES: To assess the effect of simvastatin on uterine leiomyoma growth and extracellular matrix (ECM) deposition. DESIGN: Laboratory analysis of human leiomyoma cell culture, xenograft in a mouse model, and patient tissue from a clinical trial. SETTING: Academic research center. PATIENT(S): Tissue culture from human leiomyoma tissue and surgical leiomyoma tissue sections from a placebo-controlled randomized clinical trial. INTERVENTION(S): Simvastatin treatment. MAIN OUTCOME MEASURE(S): Serum concentrations, xenograft volumes, and protein expression. RESULTS: Mice xenografted with 3-dimensional human leiomyoma cultures were divided as follows: 7 untreated controls; 12 treated with activated simvastatin at 10 mg/kg body weight; and 15 at 20 mg/kg body weight. Simvastatin was detected in the serum of mice injected at the highest dose. Xenograft volumes were significantly smaller (mean 53% smaller at the highest concentration). There was dissolution of compact ECM, decreased ECM formation, and lower collagen protein expression in xenografts. Membrane type 1 matrix metalloproteinase was increased in vitro and in vivo. Matrix metalloproteinase 2 and low-density lipoprotein receptor-related protein 1 were increased in vitro. CONCLUSIONS: Simvastatin exhibited antitumoral activity with ECM degradation and decreased leiomyoma tumor volume in vivo. Activation of the matrix metalloproteinase 2, membrane type 1 matrix metalloproteinase, and low-density lipoprotein receptor-related protein 1 pathway may explain these findings.


Leiomyoma , Uterine Neoplasms , Female , Humans , Mice , Animals , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/pharmacology , Simvastatin/pharmacology , Simvastatin/metabolism , Simvastatin/therapeutic use , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/pharmacology , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Leiomyoma/drug therapy , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Body Weight , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/therapeutic use
11.
Hum Fertil (Camb) ; 26(4): 712-719, 2023 Oct.
Article En | MEDLINE | ID: mdl-37815345

The effect of the intramural fibroids not distorting the cavity remains controversial on implantation and pregnancy. The aim of this study was to examine the impact of non-cavity distorting intramural fibroids on endometrium. Fifty-six women with non-cavity distorting intramural fibroid were recruited in this study. Paired endometrial specimens, one from beneath the fibroid (ipsilateral endometrium) and the other from the opposite side of uterine cavity, away from the fibroid (contralateral endometrium) were obtained 7-9 days after the luteinizing hormone surge in a natural cycle. Histological dating, Mucin1 and Glycodelin expression and uterine natural killer (uNK) cell density were compared between the paired samples. The median (IQR) H-score of Mucin1 staining in the ipsilateral luminal epithelium was 210% (142-230%), which was significantly (p < 0.05) higher than that of the contralateral luminal endometrium (157%, IQR 114-176%). There was no significant difference in Mucin1 expression in the glandular epithelium. There was no significant difference in Glycodelin expression in luminal and glandular epithelium, uNK cells density or histological dating results between the paired endometrial samples. In conclusion, it is uncertain whether the altered expression of Mucin1 in luminal epithelium alone may have impact on implantation when other markers are not changed.


Leiomyoma , Uterine Neoplasms , Pregnancy , Female , Humans , Glycodelin/metabolism , Leiomyoma/metabolism , Leiomyoma/pathology , Embryo Implantation , Endometrium/metabolism , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
12.
F S Sci ; 4(4): 327-338, 2023 11.
Article En | MEDLINE | ID: mdl-37797815

OBJECTIVE: To determine whether cyclic strain affects fibroid cell cytoskeletal organization, proliferation, and collagen synthesis differently than myometrial cells. DESIGN: A basic science study using primary cultures of patient-matched myometrial and fibroid cells. SETTING: Academic laboratory. PATIENT(S): Premenopausal women undergoing myomectomy or hysterectomy for the treatment of symptomatic uterine fibroids. INTERVENTION(S): Application of uniaxial strain patterns mimicking periovulation, menses, or dysmenorrhea using the Flexcell tension system or static control. Secondarily, inhibition of G protein-coupled estrogen receptor-1 and phosphatidylinositol 3-kinase. MAIN OUTCOME MEASURE(S): Cell alignment, cell number, and collagen content. RESULT(S): Menses-strained cells demonstrated the most variation in cell alignment, cell proliferation, and procollagen content between myometrial and fibroid cells. Procollagen content decreased in myometrial cells with increasing strain amplitude and decreasing frequency. G protein-coupled estrogen receptor-1 inhibition decreases cellular alignment in the presence of strain. CONCLUSION(S): Mechanotransduction affecting cytoskeletal arrangement through the G protein-coupled estrogen receptor-1-phosphatidylinositol 3-kinase pathway is altered in fibroid cells. These results highlight the importance of incorporating mechanical stimulation into the in vitro study of fibroid pathology.


Leiomyoma , Uterine Neoplasms , Humans , Female , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/therapy , Mechanotransduction, Cellular , Procollagen/metabolism , Receptors, Estrogen/metabolism , Collagen/metabolism , Phosphatidylinositol 3-Kinases , GTP-Binding Proteins/metabolism
13.
F S Sci ; 4(4): 341-349, 2023 11.
Article En | MEDLINE | ID: mdl-37739343

OBJECTIVE: To investigate the combined effects of Crila and green tea extract, epigallocatechin gallate (EGCG), compared with single treatments, on human uterine fibroid cells. DESIGN: Human uterine leiomyoma (HuLM) cells were treated with different concentrations of Crila, alone or in combination with EGCG, and several experiments were employed. SETTING: A laboratory study. PATIENTSS: N/A. INTERVENTIONS: Crila, EGCG. MAIN OUTCOME MEASURES: Cell proliferation assay, drug synergy using combination index, protein and gene expression analysis of proliferation marker proliferating cell nuclear antigen, and apoptosis marker BAX using western blotting and quantitative polymerase chain reaction, respectively. RESULTS: Results showed that tested Crila concentrations, when combined with 25 and 50 µM EGCG, exerted synergistic growth inhibitory effects on HuLM viability. This inhibitory effect on HuLM cell viability was because of decreased cell proliferation, as shown by a decrease in the proliferation marker proliferating cell nuclear antigen at messenger RNA and protein levels, rather than inducing apoptosis. CONCLUSION: Our study concludes that the utility of natural compounds may provide a safe and cost-effective alternative to currently used short-term hormonal therapies against uterine fibroids.


Leiomyoma , Uterine Neoplasms , Female , Humans , Proliferating Cell Nuclear Antigen/analysis , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/therapeutic use , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Cell Line, Tumor , Leiomyoma/drug therapy
14.
J Mol Endocrinol ; 71(4)2023 11 01.
Article En | MEDLINE | ID: mdl-37668348

Abstract: Uterine fibroids (UFs) are benign tumors arising from the uterus, characterized by accumulation of abundant extracellular matrix (ECM) and sex steroid-dependent growth. Women with symptomatic UFs have reduced quality of life and decreased labor productivity. Among the driver gene mutations identified in UFs, mutations in MED12, a component of the cyclin-dependent kinase (CDK) Mediator module, are the most common and observed in 50-80% of UFs. They are gain-of-function mutations and are more frequently observed in Black women and commonly observed even in small UFs. MED12 mutation-positive UFs (MED12-UFs) often develop multiple rather than solitary and have distinct gene expression profiles, DNA methylomes, transcriptomes, and proteomes. Gene expressions related to ECM organization and collagen-rich ECM components are upregulated, and impaired Mediator kinase activity and dysregulation of Wnt/ß-catenin signaling are identified in MED12-UFs. Clinically, the UF shrinking effect of gonadotropin-releasing hormone agonists and ulipristal acetate is dependent on the MED12 mutation status. Understanding of characteristics of MED12-UFs and functions of MED12 mutations for UF tumorigenesis may elucidate the pathophysiology of UFs, leading to the development of new therapeutic options in women with symptomatic UFs.


Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Quality of Life , Mediator Complex/genetics , Mediator Complex/metabolism , Leiomyoma/genetics , Leiomyoma/metabolism , Leiomyoma/pathology , Transcription Factors/metabolism , Mutation
15.
Nutrients ; 15(11)2023 May 30.
Article En | MEDLINE | ID: mdl-37299521

Leiomyosarcoma is an aggressive soft tissue sarcoma derived from the smooth muscle cells of the uterus. We tested the effect of Romina strawberry extract treatment on three-dimensional cultured uterine leiomyosarcoma cells. We established 3D cultures in agarose gel, where the cells seeded were able to form spheroids. We performed the observation and counting of the spheroids with a phase-contrast optical microscope, finding a decrease in the number of spheroids formed in the plates after 24 and 48 h treatment with 250 µg/mL of cultivar Romina strawberry extract. We also characterized the spheroids morphology by DNA binding fluorescent-stain observation, hematoxylin and eosin stain, and Masson's trichrome stain. Finally, the real-time PCR showed a reduced expression of extracellular matrix genes after strawberry treatment. Overall, our data suggest that the fruit extract of this strawberry cultivar may be a useful therapeutic adjuvant for the management of uterine leiomyosarcoma.


Fragaria , Leiomyosarcoma , Sarcoma , Uterine Neoplasms , Humans , Female , Leiomyosarcoma/drug therapy , Leiomyosarcoma/metabolism , Fragaria/chemistry , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Myocytes, Smooth Muscle/metabolism
16.
F S Sci ; 4(3): 239-256, 2023 08.
Article En | MEDLINE | ID: mdl-37182601

OBJECTIVE: To investigate the link between EZH2 and Wnt/ß-catenin signaling and its role in uterine fibroids (UFs) pathogenesis and explore the potential effect of natural compound methyl jasmonate (MJ) against UFs. DESIGN: EZH2 overexpression or inhibition was achieved in human uterine leiomyoma (HuLM) cells using EZH2-expressing adenovirus or chemical EZH2 inhibitor (DZNep), respectively. The HuLM and normal uterine smooth muscle cells were treated with 0.1-3 mM of MJ, and several experiments were employed. SETTING: Laboratory study. PATIENTS(S): None. INTERVENTION(S): Methyl jasmonate. MAIN OUTCOME MEASURE(S): Protein expression of EZH2, ß-catenin, and proliferating cell nuclear antigen (PCNA) was measured by Western blot as well as gene expression alterations of Wnt ligands (Wnt5A, Wnt5b, and Wnt9A), WISP1, CTNNB1, and its responsive gene PITX2 using quantitative real-time polymerase chain reaction. The protein and ribonucleic acid (RNA) levels of several markers were measured in MJ-treated or untreated HuLM cells, including EZH2 and ß-catenin, extracellular matrix markers collagen type 1 (COL1A1) and fibronectin (FN), proliferation markers cyclin D1 (CCND1) and PCNA, tumor suppressor marker p21, and apoptotic markers (BAX, cytochrome c, and cleaved caspase 3). RESULT(S): EZH2 overexpression significantly increased the gene expression of several Wnt ligands (PITX2, WISP1, WNT5A, WNT5B, and WNT9A), which increased nuclear translocation of ß-catenin and PCNA and eventually HuLM cell proliferation. EZH2 inhibition blocked Wnt/ß-catenin signaling activation where the aforementioned genes significantly decreased as well as PCNA, cyclin D1, and PITX2 protein expression compared with those in untreated HuLM. Methyl jasmonate showed a potent antiproliferative effect on HuLM cells in a dose- and time-dependent manner. Interestingly, the dose range (0.1-0.5 mM) showed a selective growth inhibitory effect on HuLM cells, not on normal uterine smooth muscle cells. Methyl jasmonate treatment at 0.5 mM for 24 hours significantly decreased both protein and RNA levels of EZH2, ß-catenin, COL1A1, FN, CCND1, PCNA, WISP1, and PITX2 but increased the protein levels of p21, BAX, cytochrome, c and cleaved caspase 3 compared with untreated HuLM. Methyl jasmonate-treated cells exhibited down-regulation in the RNA expression of 36 genes, including CTNNB1, CCND1, Wnt5A, Wnt5B, and Wnt9A, and up-regulation in the expression of 34 genes, including Wnt antagonist genes WIF1, PRICKlE1, and DKK1 compared with control, confirming the quantitative real-time polymerase chain reaction results. CONCLUSION(S): Our studies provide a novel link between EZH2 and the Wnt/ß-catenin signaling pathway in UFs. Targeting EZH2 with MJ interferes with the activation of wnt/ß-catenin signaling in our model. Methyl jasmonate may offer a promising therapeutic option as a nonhormonal and cost-effective treatment against UFs with favorable clinical utility, pending proven safe and efficient in human clinical trials.


Leiomyoma , Uterine Neoplasms , Female , Humans , Wnt Signaling Pathway/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/therapeutic use , Cyclin D1/metabolism , Cyclin D1/therapeutic use , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Caspase 3/metabolism , Caspase 3/therapeutic use , Ligands , bcl-2-Associated X Protein/therapeutic use , beta Catenin/genetics , beta Catenin/metabolism , beta Catenin/therapeutic use , Leiomyoma/drug therapy , Leiomyoma/genetics , RNA/therapeutic use , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism
17.
Reprod Sci ; 30(11): 3305-3314, 2023 11.
Article En | MEDLINE | ID: mdl-37253935

Uterine leiomyomas, or fibroids, are common, benign tumors for which hysterectomy is the only definitive treatment. The extracellular matrix of fibroids is disorganized and stiffer than the surrounding myometrial tissue. To understand how stiffness affects fibroid cells, patient-matched fibroid and myometrial cells were cultured on substrates with stiffnesses varying from 0.2 to 150 kPa. Fibroid cells grew more slowly than myometrial cells overall, and only the myometrial cells altered their growth rate in response to stiffness. In both cell types, cell proliferation decreased with inhibition of PI3K and increased with inhibition of IGF-1. The cellular area was greater for the fibroid cells. The only significant effect of stiffness on the cell area was between the 0.2 and 64 kPa substrates, and this was true for both cell types. To investigate intracellular stiffness, intracellular particle tracking microrheology was used. Fibroid cells exhibited a more than 100-fold increase in elastic modulus at a frequency of 1 Hz in response to the addition of external stress, while myometrial cells showed little change in elastic modulus. Overall, the responses of both cells followed similar trends in response to stiffness and inhibitors, although the response was attenuated in the fibroid cells. The changes that were demonstrated by the change in intracellular stiffness with response to compression suggest that other mechanical forces may provide insight into differences in the two cell types.


Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/metabolism , Cues , Leiomyoma/metabolism , Myometrium/metabolism , Hysterectomy
18.
Nutrients ; 15(3)2023 Jan 31.
Article En | MEDLINE | ID: mdl-36771423

Uterine leiomyomas are the most common benign tumors of the female reproductive system. Obese individuals have a higher burden of uterine leiomyoma, yet the mechanism relating obesity and leiomyoma development remains unknown. In this study, we observe the effect of adipocyte coculture and leptin treatment on human myometrium and leiomyoma cells. We isolated primary leiomyoma and myometrium cells from hysterectomy or myomectomy patients. Protein expression levels of phosphorylated ERK1/2/total ERK1/2, phosphorylated STAT3/total STAT3, and phosphorylated AKT1/2/3/total AKT1/2/3 were quantified using immunoblotting in immortalized and primary leiomyoma and myometrial cells cocultured with human adipocytes and treated with leptin. An enzyme-linked immunosorbent assay (ELISA) was used to assess pro-inflammatory, fibrotic, and angiogenic factors in immortalized human myometrium and leiomyoma cells treated with leptin. The effects of STAT3, ERK, and AKT inhibitors were assessed in leiomyoma cell lines additionally cultured with adipocytes. Adipocyte coculture and leptin treatment increases the expression of JAK2/STAT3, MAPK/ERK, and PI3K/AKT signaling while inhibitors suppressed this effect. Leptin induces a tumor-friendly microenvironment through upregulation of pro-inflammatory (IFNγ, IL-8, IL-6, GM-CSF, MCP-1, and TNF-α), fibrotic (TGF-ß1, TGF-ß2, and TGF-ß3), and angiogenic (VEGF-A, HGF, and Follistatin) factors in human leiomyoma cells. Furthermore, adipocyte coculture and leptin treatment increases leiomyoma cells growth through activation of MAPK/ERK, JAK2/STAT3, and PI3k/AKT signaling pathways. Finally, STAT3, ERK, and AKT inhibitor treatment suppressed PCNA, TNF-α, TGF-ß3, and VEGF-A intracellular staining intensity in both adipocyte coculture and leptin treated leiomyoma cells. These findings suggest that, in obese women, adipocyte secreted hormone or adipocytes may contribute to leiomyoma development and growth by activating leptin receptor signaling pathways.


Leiomyoma , Uterine Neoplasms , Female , Humans , Adipokines/metabolism , Leptin/pharmacology , Leptin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Leiomyoma/metabolism , Adipocytes/metabolism , Obesity/metabolism , Uterine Neoplasms/metabolism , Tumor Microenvironment
19.
F S Sci ; 4(1): 74-89, 2023 02.
Article En | MEDLINE | ID: mdl-36273722

OBJECTIVE: To determine whether a curcumin-supplemented diet would prevent and/or treat uterine leiomyoma growth in our mouse xenograft model. DESIGN: Animal study. SETTING: Laboratory study. PATIENT(S): N/A. INTERVENTION(S): Curcumin-supplemented diet. MAIN OUTCOME MEASURE(S): Dietary intake, blood concentrations, tumor size, extracellular matrix protein concentrations, apoptosis markers. RESULT(S): We found that curcumin was well tolerated as a dietary supplement, free curcumin and its metabolites were detected in the serum, and exposure resulted in approximately 60% less leiomyoma xenograft growth as well as dissolution of the peripheral extracellular matrix architecture of the xenografts. The production of matrix proteins, including collagens, decreased, whereas the number of apoptotic cells in the xenografts increased. Additionally, when xenografts were placed in a uterine intramural location, we found a significantly increased apoptotic response to curcumin in the diet. CONCLUSION(S): Mice on a diet supplemented with curcumin could achieve serum concentrations sufficient to regulate human leiomyoma xenograft growth, and curcumin could play both preventive and curative roles in the treatment of uterine leiomyoma as an oral nutritional supplement.


Curcumin , Leiomyoma , Uterine Neoplasms , Female , Humans , Animals , Mice , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/metabolism , Uterine Neoplasms/drug therapy , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Heterografts , Solubility , Leiomyoma/drug therapy , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
20.
Fertil Steril ; 119(3): 504-513, 2023 03.
Article En | MEDLINE | ID: mdl-36473610

OBJECTIVE: To reveal whether hysteroscopic removal of the International Federation of Gynecology and Obstetrics (FIGO) types 0 and 1 fibroids makes any changes in the expression of homeobox genes (HOXA10, HOXA11), leukemia inhibitory factor, and nuclear factor-kappa B (NF-kB). DESIGN: A case-control study. SETTING: University-based in vitro fertilisation center. PATIENT(S): This study consisted of a total of 29 participants, 21 with FIGO types 0 and 1 fibroids and 8 with normal uterine cavity without fibroids. INTERVENTION(S): Patients in FIGO types 0 and 1 fibroids group underwent hysteroscopic myomectomy. The patients in the control group underwent laparoscopic tubal ligation. Endometrial cells were collected by flushing method from all participants before and 3 months after myomectomy. Real-time polymerase chain reaction was used to detect HOXA10, HOXA11, and LIF mRNA expressions in endometrial flushing samples. The relative expressions of homeobox and LIF mRNA were calculated with comparative ΔCt method. Endometrial NF-kB concentration was measured quantitatively by enzyme-linked immunosorbent assay. MAIN OUTCOME MEASURE(S): To compare endometrial HOXA10, HOXA11, and LIF mRNA expressions as well as endometrial NF-kB concentration before and after myomectomy. RESULT(S): Premyomectomy NF-kB levels of type 0 (4.22 ± 1.02 ng/mL) and type 1 fibroid (6.44 ± 2.30 ng/mL) were significantly higher than the values of control group (0.54 ± 0.10 ng/mL). Surgical removal of type 0 and 1 fibroids resulted in a significant decrease in endometrial NF-kB levels (1.33 ± 0.02 ng/mL vs 1.65 ± 0.27 ng/mL, respectively). In type 0 fibroid group, after myomectomy, there was a 11.1-fold increase in HOXA10 mRNA, 4.23-fold in HOXA11 mRNA, and 7.63-fold in LIF mRNA. In the type 1 fibroid group, after myomectomy, there was a 16.3-fold increase in HOXA10 mRNA, 8.34-fold in HOXA11 mRNA, and 9.38-fold in LIF mRNA. A nonsignificant change was detected in homeobox and LIF mRNA after tubal sterilization. A negative and significant correlation was found between endometrial NF-kB and HOXA10 (r=-0.67), HOXA11 (r=-0.71) and LIF (r=-0.54). CONCLUSION(S): High proinflammatory NF-kB concentration and low homeobox and LIF mRNA expressions were detected in the presence of type 0 or 1 fibroids that returned to normal values after hysteroscopic myomectomy.


Leiomyoma , Uterine Myomectomy , Uterine Neoplasms , Female , Humans , Pregnancy , Case-Control Studies , Leiomyoma/genetics , Leiomyoma/surgery , Leiomyoma/metabolism , NF-kappa B , RNA, Messenger , Transcription Factors , Uterine Neoplasms/genetics , Uterine Neoplasms/surgery , Uterine Neoplasms/metabolism
...